Piduino par l’exemple

Comme piduino utilise la même API que Arduino, il vous suffit de vous rendre sur la référence Arduino, ou sur n’importe quel site expliquant les fonctions du langage Arduino pour en avoir une documentation.

Premier exemple, Blink !

Le dossier exemples contient des exemples du monde Arduino qui peuvent être utilisés directement avec piduino. La seule chose à ajouter par rapport à l’exemple correspondant Arduino est la ligne :

#include <Piduino.h>

Voici le code source de l’exemple Blink qui fait clignoter une led :

#include <Piduino.h> // all the magic is here ;-)

const int ledPin = 0; // Header Pin 11: GPIO17 for RPi, GPIOA0 for NanoPi

void setup() {
  // initialize digital pin ledPin as an output.
  pinMode (ledPin, OUTPUT);
}

void loop () {
  // Press Ctrl+C to abort ...
  digitalWrite (ledPin, HIGH);  // turn the LED on (HIGH is the voltage level)
  delay (1000);                 // wait for a second
  digitalWrite (ledPin, LOW);   // turn the LED off by making the voltage LOW
  delay (1000);                 // wait for a second
}

Évidement, vous devez connaître le numéro de broche où vous avez connecté la led ! Ce nombre dépend de votre modèle de carte Pi, pour le savoir rapidement, vous pouvez taper la commande pido readall 1, qui nous donne, par exemple, l’affichage suivant sur un Raspberry Pi B:

                                    P1 (#1)
+-----+-----+----------+------+---+----++----+---+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | V | Ph || Ph | V | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+---+----++----+---+------+----------+-----+-----+
|     |     |     3.3V |      |   |  1 || 2  |   |      | 5V       |     |     |
|   2 |   8 |    GPIO2 |   IN | 1 |  3 || 4  |   |      | 5V       |     |     |
|   3 |   9 |    GPIO3 |   IN | 1 |  5 || 6  |   |      | GND      |     |     |
|   4 |   7 |    GPIO4 |   IN | 1 |  7 || 8  | 1 | ALT0 | TXD0     | 15  | 14  |
|     |     |      GND |      |   |  9 || 10 | 1 | ALT0 | RXD0     | 16  | 15  |
|  17 |   0 |   GPIO17 |   IN | 0 | 11 || 12 | 0 | IN   | GPIO18   | 1   | 18  |
|  27 |   2 |   GPIO27 |   IN | 0 | 13 || 14 |   |      | GND      |     |     |
|  22 |   3 |   GPIO22 |   IN | 0 | 15 || 16 | 0 | IN   | GPIO23   | 4   | 23  |
|     |     |     3.3V |      |   | 17 || 18 | 0 | IN   | GPIO24   | 5   | 24  |
|  10 |  12 |   GPIO10 |   IN | 0 | 19 || 20 |   |      | GND      |     |     |
|   9 |  13 |    GPIO9 |   IN | 0 | 21 || 22 | 0 | IN   | GPIO25   | 6   | 25  |
|  11 |  14 |   GPIO11 |   IN | 0 | 23 || 24 | 1 | IN   | GPIO8    | 10  | 8   |
|     |     |      GND |      |   | 25 || 26 | 1 | IN   | GPIO7    | 11  | 7   |
+-----+-----+----------+------+---+----++----+---+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | V | Ph || Ph | V | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+---+----++----+---+------+----------+-----+-----+

La colonne iNo correspond au numéro ‘Arduino’, le numéro 0 pin correspond donc à la broche 11 du connecteur GPIO (GPIO17).

Pour compiler le programme blink sur la ligne de commande, vous devez taper le commander:

$ g++ -o blink blink.cpp $(pkg-config --cflags --libs piduino)

La dernière partie de la commande utilise pkg-config pour ajouter les options de construction à g ++ afin de compiler le programme correctement.

Vous pouvez ensuite exécuter le programme:

 $ sudo ./blink

sudo est nécessaire pour accéder à la zone de mémoire du GPIO. Vous pouvez activer le bit setuid pour éviter sudo à l’avenir:

$ sudo chmod u+s blink
$ ./blink

Pour disposer d’un environnement de développement plus convivial, il est conseillé d’utiliser Codelite, l’installation de piduino ajoute un modèle de programme pour piduino. Pour créer un nouveau programme piduino dans Codelite, il faut, une fois votre workspace créé, utiliser le menu Workspace/New Project et sélectionner le modèle Simple Executable (C++ piduino) :

Modèle de projet Codelite pour piduino

Dans Codelite, on peut non seulement compiler, mais aussi éditer et surtout déboguer le programme :

Débogage avec Codelite

Deuxième exemple

le deuxième exemple rtc_bq32k, utilise la bibliothèque Wire pour lire l’heure dans un circuit BQ32000 RTC.

Cela permet de découvrir 2 différences importantes entre une carte Arduino et une carte Pi :

  1. Tout d’abord, sur une carte Pi, l’interface homme-machine (écran et clavier) est fait sur la ligne de commande (la console !). Sur Arduino, le port série est utilisé.
  2. Sur une carte Pi, un programme peut se terminer pour donner la main à l’utilisateur. Sur Arduino, le programme ne s’arrête jamais (en fait, sur un système Linux, le programme du noyau ne s’arrête jamais non plus …)

Pour résoudre le premier problème, piduino définit un objet Console dont le l’utilisation est identique à l’objet Serial (c’est une classe dérivée de Stream).

Afin de permettre la compilation sur les deux plates-formes sans modifier le code source, nous pouvons ajouter au début du programme un bloc qui teste si la plate-forme cible est un système Unix/Linux (piduino), si c’est le cas, on inclut le fichier Piduino.h, sinon on définit un alias de Console qui correspond à Serial, c’est-à-dire que l’interface homme-machine est sur le port série.

#ifdef __unix__
#include <Piduino.h>  // All the magic is here ;-)
#else
// Defines the serial port as the console on the Arduino platform
#define Console Serial
#endif

#include <Wire.h>

void printBcdDigit (byte val, bool end = false) {
  val = (val / 16 * 10) + (val % 16); // BCD to DEC

  if (val < 10) {
    Console.write ('0'); // leading zero
  }
  if (end) {

    Console.println (val);
  }
  else {

    Console.print (val);
    Console.write (':');
  }
}

void setup() {

  Console.begin (115200);
  Wire.begin(); // Starting the i2c master
}

void loop() {

  Wire.beginTransmission (0x68); // start of the frame for the RTC at slave address 0x68
  Wire.write (0); // write the address of the register in the RTC, 0 first register
  Wire.endTransmission (false); // restart condition
  Wire.requestFrom (0x68, 3); // 3-byte read request

  if (Wire.available() == 3) { // if the 3 bytes have been read
    byte sec = Wire.read();
    byte min = Wire.read();
    byte hour = Wire.read() & 0x3F; // remove CENT_EN and CENT LSB bits

    // time display
    printBcdDigit (hour);
    printBcdDigit (min);
    printBcdDigit (sec, true);
  }
  exit (0); // exit the loop() function without ever coming back.
  // On Arduino, exit() performs an infinite loop as explained on
  // https://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html
  // on a Pi board, exit () stops the program by returning the supplied value.
}

Pour résoudre le second problème, il est possible d’utiliser sur les 2 les plates-formes, la fonction exit() (définie dans le bibliothèque standard). Cette fonction, compatible avec les deux plates-formes, permet d’arrêter l’exécution la fonction loop().

Sur un système Unix/Linux, cela arrête le programme et revient à la ligne de commande, sur Arduino, cela effectue une boucle infinie (après avoir appelé le destructeur d’objets C++).

Configuration de piduino

piduino détecte le modèle de carte sur lequel il s’exécute au moment du lancement du programme qui l’utilise, ainsi si vous installez le même paquet Armbian libpiduino, en architecture armhf par exemple, sur une carte Nano Pi Neo et sur Orange Pi Zero, piduino détectera automatiquement le bon modèle de carte !

Comment fait-il ?

Il utilise les fichiers présents sur la machine hôte pour le savoir. Il commence par scruter les fichiers /etc/friendlyelec-release puis /etc/armbian-release à la recherche d’un champ BOARD lui indiquant la signature de la carte (tag), si il ne trouve rien, il scrute le fichier /proc/cpuinfo à la recherche d’un numéro de révision correspondant à une carte Raspberry Pi de la base de données, si il ne le trouve pas, il ne peut le deviner ! vous aurez donc une erreur.

Il est possible de forcer le choix du modèle de carte Pi en utilisant le fichier de configuration /etc/piduino.conf.

Cela peut être nécessaire lorsque le programme ne peut pas détecter la configuration de la carte. Par exemple, dans le cas du NanoPi Neo Core/Core2, nous pouvons indiquer que la carte est sur son shield, dans ce cas, l’affichage du connecteur par la commande pido readall sera adaptée.

Comme expliqué précédemment, la détection de modèle de carte Pi utilise deux méthodes:
* La première méthode, qui s’applique aux cartes Raspberry Pi, lit le Fichier /proc/cpuinfo pour obtenir le modèle de microprocesseur dans le champ Hardware et la version du matériel dans le champ Revision. Ce numéro de révision est comparé avec le base de données pour en déduire le modèle RaspberryPi.
* La deuxième méthode, qui s’applique aux cartes utilisant ArmBian, vient de la lecture /etc/armbian-release ou /etc/friendlyelec-release pour obtenir le modèle de carte dans BOARD. piduino compare cette signature avec la base de données pour en déduire le modèle RaspberryPi.

Dans le fichier de configuration /etc/piduino.conf, nous trouverons ces deux possibilités, qu’il faut renseigner (l’une ou l’autre, mais jamais les deux !).

Par exemple, si nous voulons indiquer que notre NanoPi Neo Core2 est installé sur son shield, nous mettrons la valeur du champ tag à nanopineocore2shield:

# PiDuino configuration file
connection_info="sqlite3:db=/usr/local/share/piduino/piduino.db"

# Allows you to force the board tag (Armbian)
# !! Be careful, this is at your own risk !!
# !! Forcing an incorrect value may destroy GPIO pins !!
tag="nanopineocore2shield"

# Allows forcing the revision of the board (Raspbian)
# !! Be careful, this is at your own risk !!
# !! Forcing an incorrect value may destroy GPIO pins !!
#revision=0xa02082

On peut constater que le fichier de configuration contient également l’adresse de la base de données à utiliser. La base de données est par défaut un fichier SQLite3 local, mais cette base de données peut être installée sur un serveur MySQL par exemple (pour le format de la ligne connection_info Voir la documentation de CPPDB).

Utiliser une librairie Arduino sur carte Pi

Cet article est la suite de l’article Utiliser Hmi4DinBox sur carte Pi. Il faudra donc avoir effectuer les manipulations prévues dans cet article : installation ou mise à jour de piduino, connexion et test de l’interface Hmi4DinBox sur le Nano Pi.

Comme nous l’avons dans un article précédent la librairie piduino permet de compiler un croquis Arduino sur une carte Pi (Nano, Raspberry, Orange …). La librairie piduino peut compiler tous les croquis faisant appel aux fonctions de calcul de base (UC), aux broches d’entrées-sorties numériques (GPIO) ainsi qu’aux liaisons série, I2C et SPI. Il faut préciser que, même si cela peut paraître évident, piduino ne peut pas émuler accéder à des ressources non disponibles sur la carte Pi, comme l’ADC par exemple, mais il dispose aussi de la fonction analogWrite() qui permet de générer un signal PWM sur n’importe quelle broche GPIO…

A certaines conditions, il est possible d’envisager l’utilisation de librairie Arduino sur carte Pi. Posons le problème sous forme de questions réponses :

  • Est-il possible d’utiliser une librairie conçue pour Arduino sur une carte Pi grâce à piduino ?
    En fait, cela dépend de la librairie, si celle-ci ne fait pas d’accès direct aux ressources matérielles du microcontrôleur, cela devrait fonctionner.
  • Comment savoir si une librairie fait un appel direct aux ressources matérielles du microcontrôleur ? Il faut regarder dans les fichiers du code source de la librairie (.cpp), si un ou plusieurs fichiers contient des instructions #include suivies d’un nom de fichier d’entête commençant par <avr/ cela ne sera pas possible (en tout cas pas sans modification du code source de la librairie).

Le but de cet article est de montrer comment utiliser une librairie Arduino, qui répond à la condition précédente, sur une carte Pi. Pour l’utilisation d’une librairie “normale” prévue pour être utiliser sur carte Pi, on se reportera à l’article Utiliser facilement les librairies avec CodeLite.

Nous allons utiliser le Codelite pour créer un espace de travail (un workspace) et un projet piduino, ensuite nous ajouterons les fichiers source de la librairie Hmi4DinBox avant de compiler et exécuter le programme. Cela suppose que vous savez utiliser Codelite dans ses fonctions de base, comme expliqué dans l’article Utilisation de CodeLite.

Création de l’espace de travail

Nous allons créer un espace de travail pour notre tutoriel dans ~/src que nous appellerons hmi-tuto.

Connectez-vous en ssh au Nano Pi à partir d’un PC sous GNU/Linux, on n’oubliera pas l’option -X car nous avons besoin de XWindow 😉

ssh pi@n12.btssn.lan -X

Créer un dossier ~/src s’il n’existe pas :

pi@nanopineocore2:~$ mkdir -p src

Lancer Codelite en tâche de fond (&):

pi@nanopineocore2:~$ codelite &
[1] 9882

Utiliser le menu Workspace > New Workspace... pour créer notre espace de travail.

Sélectionner le dossier /home/pi/src comme chemin et le nom choisi hmi-tuto.

L’espace de travail est créé, nous pouvons le voir dans le panneau latéral de Codelite.

Clonage de la librairie Hmi4DinBox

Il nous faut maintenant le code source de la librairie Hmi4DinBox que nous allons récupérer avec git. Nous mettrons le dossier de la librairie dans /home/pi/src/hmi-tuto :

pi@nanopineocore2:~$ cd src/hmi-tuto/
pi@nanopineocore2:~/src/hmi-tuto$ git clone https://github.com/epsilonrt/Hmi4DinBox.git
Clonage dans 'Hmi4DinBox'...
remote: Enumerating objects: 374, done.
remote: Counting objects: 100% (374/374), done.
remote: Compressing objects: 100% (208/208), done.
remote: Total 374 (delta 178), reused 340 (delta 144), pack-reused 0
Réception d'objets: 100% (374/374), 29.81 MiB | 1.04 MiB/s, fait.
Résolution des deltas: 100% (178/178), fait.

Nous avons maintenant un dossier Hmi4DinBox dans /home/pi/src/hmi-tuto. Le dossier Hmi4DinBox/src contient le code source de la librairie :

pi@nanopineocore2:~/src/hmi-tuto$ ls Hmi4DinBox/src
Hmi4DinBox.cpp  Hmi4DinBox.h  version.h  WireHmi.cpp  WireHmi.h  WireLcd.cpp  WireLcd.h

Création du projet

Nous allons maintenant créé le projet HelloWorld en partant du croquis du même nom fourni dans le dossier Hmi4DinBox/examples/HelloWorld. Ce programme affiche un message sur le LCD de Hmi4DinBox ainsi qu’un comptage.

Faites un clic-droit sur le workspace dans le panneau latéral de Codelite et sélectionner le menu New > New Project....

Dérouler l’item Console, puis choisir le modèle Simple executable (C++ piduino) et cliquer sur Next.

Taper le nom HelloWorld puis cliquer sur Next et Finish :

Le nouveau projet apparaît dans le workspace dans le panneau latéral, vous pouvez voir sa structure, pour l’instant composé d’un “dossier” src contenant le fichier main.cpp . Le fichier main.cpp contient un code source d’exemple (blink) dont nous n’avons pas besoin, supprimer-le en cliquant-droit dessus dans le panneau latéral, puis Remove. Confirmer la suppression du fichier du projet et du disque.

Ouvrir le fichier croquis hmi-tuto/Hmi4DinBox/examples/HelloWorld/HelloWorld.ino à l’aide du menu File > Open > Open File....

Enregistrer ce fichier dans hmi-tuto/HelloWorld/HelloWorld.cpp à l’aide du menu File > Save As.... Attention à bien modifier l’extension en .cpp !! c’est important.

Il ne reste plus qu’à ajouter notre fichier HelloWorld.cpp dans le “dossier” src de notre projet en faisant un clic-droit sur src dans le panneau latéral, puis Add an Existing File.

Vous devriez avoir une fenêtre Codelite qui ressemble à ça :

Avant de passer à la suite, il faut modifier la ligne if (!hmi.begin (24, false)) { dans la fonction setup(). En effet le paramètre 24 correspond au contraste et le false indique que le booster du LCD ne doit pas être activé. Ces paramètres sont corrects quand on alimente l’interface en 5V mais lorsqu’on l’alimente en 3,3V, il faut augmenter le contraste et surtout activer le booster. On modifiera donc cette ligne en conséquence, le programme modifié ressemble à cela :

// Hmi4DinBox Class: LCD Helloworld Example
// by epsilonrt <https://github.com/epsilonrt>

// How to control the LCD ?

// Created 18 may 2018

// This example code is in the public domain.
#ifdef __unix__
#include <Piduino.h>  // All the magic is here ;-)
#else
// Defines the serial port as the console on the Arduino platform
#define Console Serial
#endif

#include <Hmi4DinBox.h>

Hmi4DinBox hmi;

void setup() {

  pinMode ()

  Console.begin (115200);
  if (!hmi.begin (34, true)) {

    Console.println("hmi.begin() failed !");
    exit (1); // HMI failed to start !
  }
}

void loop() {
  static int counter = 0;

  // Write a piece of text on the first line...
  hmi.lcd.setCursor (0, 0); //LINE 1, ADDRESS 0
  hmi.lcd.print ("Hello World");

  // Write the counter on the second line...
  hmi.lcd.setCursor (1, 0);
  hmi.lcd.print (counter / 10, DEC);
  hmi.lcd.write ('.');
  hmi.lcd.print (counter % 10, DEC);
  hmi.lcd.write (' ');
  counter++;
  delay (500);
}

Ajout de la librairie Hmi4DinBox dans le projet

Si nous essayons de compiler notre programme grâce au menu Build > Build Project, nous avons une erreur de compilation :

/home/pi/src/hmi-tuto/HelloWorld/HelloWorld.cpp:16:24: fatal error: Hmi4DinBox.h: No such file or directory

Nous devons paramétrer notre projet pour qu’il trouve le fichier Hmi4DinBox.h.

Faites un clic-droit sur le projet HelloWorld dans le panneau latéral, puis cliquer sur le menu Settings. Dans la fenêtre qui s’ouvre choisir Global Settings, tout en bas, puis cliquer sur les trois petits points à droite de la ligne Additional Include Paths.

Ajouter le dossier ../Hmi4DinBox/src sans supprimer le point de la première ligne, puis valider.

Une nouvelle tentative de compilation nous montre que l’erreur concernant le fichier Hmi4DinBox.h mais plusieurs nouvelle erreurs apparaissent, donc la première est :

/home/pi/src/hmi-tuto/HelloWorld/HelloWorld.cpp:23: undefined reference to `Hmi4DinBox::begin(int, bool)'

Ce n’est pas une erreur de compilation mais une erreur d’édition de liens qui indique que le code exécutable de la fonction Hmi4DinBox::begin(int, bool) n’a pas été trouvé. C’est normal car le code source de cette fonction se trouve dans le fichier Hmi4DinBox.cpp qui n’est pas dans notre projet ! Il faut l’ajouter…

Nous allons commencer par créer un nouveau “dossier virtuel” dans notre projet afin d’y ranger les fichiers source de Hmi4DinBox. Faites un clic-droit sur le projet HelloWorld puis New Virtual Folder. On le nommera très logiquement Hmi4DinBox. Attention à bien décocher la case Create the folder on the file system as well.

Il faut maintenant ajouter les fichiers source dans la dossier virtuel. Faites un clic-droit sur le dossier virtuel Hmi4DinBox, puis Add an Existing File. Allez dans le dossier hmi-tuto/Hmi4DinBox/src, faites un CTRL+A pour sélectionner tous les fichiers, valider par Open.

Vous devriez avoir une fenêtre Codelite qui ressemble à ça :

Compilation du projet

Une nouvelle tentative de compilation grâce au menu Build > Build Project, nous informe :

====0 errors, 0 warnings====

que nous avons compiler notre “croquis” Arduino HelloWorld avec succès ! 😀

Exécution du projet

Nous pouvons lancer l’exécution de notre programme grâce au menu Debugger > Start/Continue Debugger. Si nous le faisons une fenêtre de terminal s’ouvre mais rien ne s’affiche sur le LCD !

Que se passe-t-il ?

En fait, pour accéder au bus I2C sur un système Armbian (accès au module i2cdev), l’utilisateur doit faire partie du groupe i2c. Si ce n’est pas le cas, l’accès est refusé, bizarrement, le système n’affiche pas d’erreur ! (c’est sûrement un bug…).

Nous allons ajouter l’utilisateur pi au groupe i2c après avoir quitter Codelite, puis nous quittons notre session :

pi@nanopineocore2:~$ sudo adduser pi i2c
pi@nanopineocore2:~$ exit

Après s’être reconnecté, nous relançons Codelite :

ssh pi@n12.btssn.lan -X
pi@nanopineocore2:~$ codelite &

On peut alors lancer lancer l’exécution de notre programme grâce au menu Debugger > Start/Continue Debugger, voilà le résultat :

Pour aller plus loin

Pour aller plus loin, vous pouvez évidement répéter cette procédure avec les différents croquis disponibles dans hmi-tuto/Hmi4DinBox/examples en commençant par KeyboardDemo.

ATTENTION, pour tous les programmes utilisant le bouton de navigation et donc la broche HIRQ, il faudra lancer Codelite en sudo conformément à l’explication de l’article Utiliser CodeLite en sudo.

Utiliser Hmi4DinBox sur carte Pi

Dans cet article nous allons utiliser l’interface homme-machine Hmi4DinBox sur une carte Pi.

Après une installation ou une mise à jour de piduino, nous connecterons l’interface Hmi4DinBox à un carte Pi avant d’en effectuer le test à partir de la ligne de commande avec les outils du paquet i2c-tools.

Comme nous l’avons vu dans un article précédent cette interface est prévue pour être connectée à une carte Arduino ou Pi par un bus I2C. Elle est fournie avec une librairie Arduino que nous utiliserons dans un deuxième article pour réaliser des programmes accédant à l’interface Hmi4DinBox sur notre carte Nano Pi.

La carte Nano Pi utilisée est une carte Nano Pi Neo Core implantée sur un Mini Shield, commercialisée en France par GoTronic, mais on pourra utiliser n’importe quelle carte Pi compatible avec piduino.

hmi4dinbox-nanopi

Installer ou mettre à jour piduino

Si ce n’est pas encore fait, installer les paquets libpiduino-dev et piduino-utils comme expliqué dans l’article sur piduino.

Si vous avez déjà installer piduino, effectuez une mise à jour des paquets :

sudo apt update
sudo apt upgrade

Afin que pido affiche correctement le connecteur GPIO, il est nécessaire de modifier le fichier /etc/piduino.conf afin d’indiquer que la carte est implantée sur le Mini Shield:

sudo nano /etc/piduino.conf

Il faut retirer le # devant la ligne tag et mettre nanopineocoreshield entre les guillemets. Le fichier doit ressembler à ceci:

# PiDuino configuration file
connection_info="sqlite3:db=/usr/share/piduino/piduino.db"

# Allows you to force the board tag (Armbian)
# !! Be careful, this is at your own risk !!
# !! Forcing an incorrect value may destroy GPIO pins !!
tag="nanopineocoreshield"

# Allows forcing the revision of the board (Raspbian)
# !! Be careful, this is at your own risk !!
# !! Forcing an incorrect value may destroy GPIO pins !!
#revision=0xa02082

Relier l’interface Hmi4DinBox au Nano Pi

Fil de câblageAprès avoir arrêté la carte Nano Pi, nous allons relier l’interface Hmi4DinBox au connecteur GPIO grâce à des fils équipés de petits connecteurs (femelle-femelle) comme ci-contre.

Le brochage du connecteur J1 de l’interface Hmi4dinBox est le suivant:

# Nom Description
1 VCC Alimentation 5V ou 3,3V, protégée contre les surtensions et les inversions de polarité
2 SCL Horloge I2C, pas de résistance au pull-up sur cette ligne! mettez-en une sur la carte principale !
3 SDA Données I2C, pas de résistance au pull-up sur cette ligne! mettez-en une sur la carte principale !
4 HIRQ Indique qu’une ou plusieurs actions ont été effectuées sur le bouton de navigation
5 GND Masse

Nous pouvons voir le brochage du connecteur GPIO CON1 du Nano Pi grâce à pido :

pido readall 1
                                          CON1 (#1)
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | Pull | V | Ph || Ph | V | Pull | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
|     |     |     3.3V |      |      |   |  1 || 2  |   |      |      | 5V       |     |     |
|  12 |   8 |  I2C0SDA | ALT2 |  OFF |   |  3 || 4  |   |      |      | 5V       |     |     |
|  11 |   9 |  I2C0SCK | ALT2 |  OFF |   |  5 || 6  |   |      |      | GND      |     |     |
|  91 |   7 |  GPIOG11 |  OFF |  OFF |   |  7 || 8  |   | OFF  | ALT2 | UART1TX  | 15  | 86  |
|     |     |      GND |      |      |   |  9 || 10 |   | OFF  | ALT2 | UART1RX  | 16  | 87  |
|   0 |   0 |   GPIOA0 |  OFF |  OFF |   | 11 || 12 |   | OFF  | OFF  | GPIOA6   | 1   | 6   |
|   2 |   2 |   GPIOA2 |  OFF |  OFF |   | 13 || 14 |   |      |      | GND      |     |     |
|   3 |   3 |   GPIOA3 |  OFF |  OFF |   | 15 || 16 |   | OFF  | OFF  | GPIOG8   | 4   | 88  |
|     |     |     3.3V |      |      |   | 17 || 18 |   | OFF  | OFF  | GPIOG9   | 5   | 89  |
|  15 |  28 | SPI1MOSI | ALT2 |  OFF |   | 19 || 20 |   |      |      | GND      |     |     |
|  16 |  24 | SPI1MISO | ALT2 |  OFF |   | 21 || 22 |   | OFF  | OFF  | GPIOA1   | 6   | 1   |
|  14 |  29 |  SPI1CLK | ALT2 |  OFF |   | 23 || 24 |   | OFF  | ALT2 | SPI1CS   | 27  | 13  |
|     |     |      GND |      |      |   | 25 || 26 |   | OFF  | OFF  | GPIOA17  | 11  | 17  |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | Pull | V | Ph || Ph | V | Pull | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+

Voilà les connexions que nous devons réaliser :

J1NomCON1NomiNo
1VCC13.3V
2SCL5I2C0SCK9
3SDA3I2C0SDA8
4HIRQ15GPIOA33
5GND6GND

Après avoir vérifié, puis revérifié encore les 5 fils, démarrer le Nano Pi.

Tester l’interface Hmi4DinBox

Avant d’utiliser l’interface dans un programme, il est préférable d’en effectuer un test directement à partir de la ligne de commande.

Nous allons utiliser pour ce faire les programmes du paquet i2c-tools (à installer si nécessaire).

sudo apt install i2c-tools

Avant de “parler” à notre interface, il ne faut oublier que les lignes SDA et SCL sur un Nano Pi ne disposent pas de résistances de pull-up (ce n’est pas le cas sur Raspberry Pi). Il faut donc, soit ajouter une résistance de 1,8k reliée au 3,3V sur chaque signal, soit activer les résistances de pull-up sur les lignes iNo 8 et 9. C’est cette dernière solution que nous allons utiliser car elle est plus simple (mais la première solution avec des résistances externes devra être retenue dans un cadre industriel).

pido nous permet d’activer les résistances de pull-up :

pido pull 8 up
pido pull 9 up

Si vous ne savez pas pourquoi il faut des résistances de pull-up sur les lignes I2C, il est tant de se renseigner sur Wikipedia

Pour comprendre ce que nous allons faire, il faut regarder le diagramme d’exigences de l’interface Hmi4DinBox qui a été présenté dans un article précédent.

L’exigence Affichage LED (id=1.10.2) nous dit la chose suivante :

  • L’interface dispose de 5 leds T1-3mm.
  • L’accès à la fonction par le module hôte se fera par bus I2C à l’adresse 0111111.
  • Le registre 0 à cette adresse permettra de lire et modifier l’état des leds (1 bit par led). Le bit 0 correspond à la led rouge, le bit 1 à la verte1, le bit 2 à la verte2, le 3 à jaune1 et le 4 à jaune2).

L’exigence Affichage LCD (id=1.10.1) nous informe que l’afficheur de modèle ST7032i se trouve à l’adresse 0111110.

Utilisons i2cdetect sur le bus I2C 0 pour savoir si les 2 adresses, celle du LCD et l’autre utilisée pour les leds (et les autres fonctions) sont détectées :

sudo i2cdetect  -y 0
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00:          -- -- -- -- -- -- -- -- -- -- -- -- -- 
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3e 3f 
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
70: -- -- -- -- -- -- -- --                         

Bingo ! nous détectons 2 circuits sur le bus I2c :

  • un circuit à l’adresse hexadécimale 0x3e, 00111110 en binaire, qui correspond au LCD.
  • un circuit à l’adresse hexadécimale 0x3f, 00111111 en binaire, qui correspond aux leds (et les autres fonctions).

Nous allons écrire 0x01 dans le registre 0 à l’adresse 0x3f grâce à i2cset :

sudo i2cset -y 0 0x3f 0 0x01

Normalement cela allume la LED1, c’est à dire la rouge, pour allumer la LED2 on écrira 0x02, la LED3 0x04, la LED4 0x08, la LED5 0x10. On allumer plusieurs leds en effectuant une somme des valeurs, par exemple, 0x12 allume la LED2 et la LED5, 0x1F toutes les leds…

Pour éteindre les leds :

sudo i2cset -y 0 0x3f 0 0x00

Pour lire l’états des leds :

sudo i2cget -y 0 0x3f 0
0x12

L’exigence id=1.10.1.1 nous permet de savoir que le registre 1 à l’adresse 0x3f correspond au rétroéclairage, pour l’allumer à mi-puissance soit 128 :

sudo i2cset -y 0 0x3f 1 128

L’exigence id=1.10.3 nous permet de savoir que les actions effectuées par l’utilisateur sont accessibles par le registre 2 à l’adresse 0x3f et que le signal HIRQ, broche iNo 3 dans notre cas, est à l’état haut lorsque des actions sont disponibles. Commençons par passer la broche en entrée et lisons sa valeur avec pido :

pido mode 3 in
pido read 3
0

Cela veut dire qu’aucune action n’est mémorisé, effectuons un appui sur le bouton, puis relisons HIRQ :

pido read 3
1

Nous pouvons effectuer maintenant la lecture des actions avec i2cget en lisant le registre 2 à l’adresse 0x3f :

sudo i2cget -y 0 0x3f 2
0x05

D’après l’exigence id=1.10.3, cela correspond à un appui (bit 7 à 0) au centre.

Une nouvelle lecture de HIRQ, nous apprend qu’il y a encore des actions disponibles :

pido read 3
1

Qu’on peut lire :

sudo i2cget -y 0 0x3f 2
0x85

Cela correspond à un relâchement (bit 7 à 1 0x80) du centre (0x05). Une nouvelle lecture de HIRQ, nous apprend qu’il n’y a plus d’action disponible.

pido read 3
0

Le test en ligne de commande du LCD à l’adresse 0x3e est un peu plus complexe car il nécessite de se pencher sur le datasheet du ST7032i… Nous verrons sa programmation dans le prochain article… 🙂

piduino

Arduino sur cartes Pi, le meilleur des deux mondes !

piduino est une bibliothèque C++ pour cartes Pi qui permet d’utiliser les entrées-sorties comme GPIO, I2C, SPI, UART… avec une API aussi proche que possible du langage Arduino.
La description des cartes Pi utilise un modèle “Objet” stocké dans une base de données qui permet d’ajouter facilement de nouveaux modèles de cartes.

Actuellement, les modèles SoC pris en charge sont AllWinner H-Series et Broadcom BCM2708 à 2710 qui lui permet d’être utilisé sur Raspberry Pi et la plupart des Nano Pi, Orange Pi et Banana Pi.

Pour en savoir plus sur piduino, vous pouvez suivre la Wiki, mais si vous êtes pressé, passons à la version de démarrage rapide …

Guide de démarrage rapide

Le moyen le plus rapide et le plus sûr d’installer piduino sur Armbian est d’utiliser le dépôt APT de piduino.org, vous devriez donc procéder comme suit:

wget -O- http://www.piduino.org/piduino-key.asc | sudo apt-key add -
sudo add-apt-repository 'deb http://apt.piduino.org stretch piduino'
sudo apt update
sudo apt install libpiduino-dev piduino-utils

Ce dépôt fournit les packages piduino pour les architectures armhf etarm64 (et la plupart des librairies et programmes disponibles sur le github de epsilonrt).
Dans les commandes ci-dessus, le dépôt est une distribution Debian Stretch, mais vous pouvez également choisir Ubuntu Xenial ou Bionic en remplaçant stretch par xenial ou bionic. Il peut être nécessaire d’installer le logiciel software-properties-common paquet pour add-apt-repository.

Pour Raspbian, vous devez faire un peu différent:

wget -O- http://www.piduino.org/piduino-key.asc | sudo apt-key add -
echo 'deb http://raspbian.piduino.org stretch piduino' | sudo tee /etc/apt/sources.list.d/piduino.list
sudo apt update
sudo apt installer libpiduino-dev piduino-utils

Le dépôt Raspbian fournit des packages piduino Stretch pour l’architecture armhf uniquement .

Si vous voulez construire piduino à partir de sources, vous pouvez suivre la Wiki.

Utilitaires

Une fois installé, vous devez exécuter ce qui suit sur la ligne de commande:

$ pinfo
Nom: NanoPi Core2 Mini Shield
Famille: NanoPi
ID de base de données: 40
Fabricant: Friendly ARM
Tag Conseil: nanopineocore2shield
SoC: H5 (Allwinner)
Mémoire: 1024 Mo
Identifiant GPIO: 9
Bus I2C: / dev / i2c-0
Bus SPI: /dev/spidev1.0
Ports série: / dev / ttyS1

Comme nous pouvons l’imaginer, dans l’exemple ci-dessus, nous sommes sur une NanoPi Neo Core2 connecté à un Mini Shield.

Pour lire l’état des broches du connecteur 1, exécutez la commande suivante sur la ligne de commande:

$ pido readall 1
                                          CON1 (#1)
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | Pull | V | Ph || Ph | V | Pull | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
|     |     |     3.3V |      |      |   |  1 || 2  |   |      |      | 5V       |     |     |
|  12 |   8 |  I2C0SDA | ALT2 |  OFF |   |  3 || 4  |   |      |      | 5V       |     |     |
|  11 |   9 |  I2C0SCK | ALT2 |  OFF |   |  5 || 6  |   |      |      | GND      |     |     |
|  91 |   7 |  GPIOG11 |  OFF |  OFF |   |  7 || 8  |   | OFF  | ALT2 | UART1TX  | 15  | 86  |
|     |     |      GND |      |      |   |  9 || 10 |   | OFF  | ALT2 | UART1RX  | 16  | 87  |
|   0 |   0 |   GPIOA0 |  OFF |  OFF |   | 11 || 12 |   | OFF  | OFF  | GPIOA6   | 1   | 6   |
|   2 |   2 |   GPIOA2 |  OFF |  OFF |   | 13 || 14 |   |      |      | GND      |     |     |
|   3 |   3 |   GPIOA3 |  OFF |  OFF |   | 15 || 16 |   | OFF  | ALT2 | UART1RTS | 4   | 88  |
|     |     |     3.3V |      |      |   | 17 || 18 |   | OFF  | ALT2 | UART1CTS | 5   | 89  |
|  15 |  28 | SPI1MOSI | ALT2 |  OFF |   | 19 || 20 |   |      |      | GND      |     |     |
|  16 |  24 | SPI1MISO | ALT2 |  OFF |   | 21 || 22 |   | OFF  | OFF  | GPIOA1   | 6   | 1   |
|  14 |  29 |  SPI1CLK | ALT2 |  OFF |   | 23 || 24 |   | OFF  | ALT2 | SPI1CS   | 27  | 13  |
|     |     |      GND |      |      |   | 25 || 26 |   | OFF  | OFF  | GPIOA17  | 11  | 17  |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | Pull | V | Ph || Ph | V | Pull | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+

pido etpinfo disposent de pages de man…, donc vous pouvez en savoir plus sur ces commandes grâce à :

$ man pido

Exemple Blink

Vous êtes prêt à faire de l’Arduino sur carte Pi ? Ok, allons-y !

Nous allons faire clignoter une led connectée avec une résistance à une broche GPIO. Voilà le code source de l’exemple, qui, à l’exception de la première ligne est identique à celui du tutoriel Arduino :

#include <Piduino.h> // all the magic is here ;-)

const int ledPin = 0; // Header Pin 11: GPIO17 for RPi, GPIOA0 for NanoPi

void setup() {
  // initialize digital pin ledPin as an output.
  pinMode (ledPin, OUTPUT);
}

void loop () {
  // Press Ctrl+C to abort ...
  digitalWrite (ledPin, HIGH);  // turn the LED on (HIGH is the voltage level)
  delay (1000);                 // wait for a second
  digitalWrite (ledPin, LOW);   // turn the LED off by making the voltage LOW
  delay (1000);                 // wait for a second
}

Évidement, vous devez connaître le numéro de broche où vous avez connecté à la led ! Pour ce faire :

$ pido readall 1
                                          CON1 (#1)
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | Pull | V | Ph || Ph | V | Pull | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
|     |     |     3.3V |      |      |   |  1 || 2  |   |      |      | 5V       |     |     |
|  12 |   8 |  I2C0SDA | ALT2 |  OFF |   |  3 || 4  |   |      |      | 5V       |     |     |
|  11 |   9 |  I2C0SCK | ALT2 |  OFF |   |  5 || 6  |   |      |      | GND      |     |     |
|  91 |   7 |  GPIOG11 |  OFF |  OFF |   |  7 || 8  |   | OFF  | ALT2 | UART1TX  | 15  | 86  |
|     |     |      GND |      |      |   |  9 || 10 |   | OFF  | ALT2 | UART1RX  | 16  | 87  |
|   0 |   0 |   GPIOA0 |  OFF |  OFF |   | 11 || 12 |   | OFF  | OFF  | GPIOA6   | 1   | 6   |
|   2 |   2 |   GPIOA2 |  OFF |  OFF |   | 13 || 14 |   |      |      | GND      |     |     |
|   3 |   3 |   GPIOA3 |  OFF |  OFF |   | 15 || 16 |   | OFF  | OFF  | GPIOG8   | 4   | 88  |
|     |     |     3.3V |      |      |   | 17 || 18 |   | OFF  | OFF  | GPIOG9   | 5   | 89  |
|  22 |  12 |   GPIOC0 |  OFF |  OFF |   | 19 || 20 |   |      |      | GND      |     |     |
|  23 |  13 |   GPIOC1 |  OFF |  OFF |   | 21 || 22 |   | OFF  | OFF  | GPIOA1   | 6   | 1   |
|  24 |  14 |   GPIOC2 |  OFF |  OFF |   | 23 || 24 |   | UP   | OFF  | GPIOC3   | 10  | 25  |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+
| sOc | iNo |   Name   | Mode | Pull | V | Ph || Ph | V | Pull | Mode |   Name   | iNo | sOc |
+-----+-----+----------+------+------+---+----++----+---+------+------+----------+-----+-----+

La colonne iNo de ce tableau correspond au numéro ‘Arduino’, le numéro 0 pin correspond donc à la broche 11 du connecteur GPIO (GPIOA0 pour un Nano Pi).

Une fois le code source du programme, enregistré dans le fichier blink.cpp (pas d’extension .ino sous Pi !), vous pouvez construire, vous devez taper la commande:

$ g++ -o blink blink.cpp $(pkg-config --cflags --libs piduino)

Vous pouvez ensuite exécuter le programme:

$ sudo ./blink

sudo est nécessaire pour accéder à la zone mémoire du GPIO. Vous pouvez activer le bit setuid pour éviter sudo à l’avenir:

$ sudo chmod u+s blink
$ ./blink

Avec Codelite c’est plus facile et amusant, non ?

Débogage avec Codelite

Vous devriez lire le wiki sur les exemples pour en savoir plus …

Genèse du projet

piduino est né d’une question d’un de mes étudiants qui m’a demandé pourquoi la programmation des entrées-sorties sur NanoPi n’était pas aussi simple que sur Arduino.

piduino vise donc à répondre à ce besoin:

Une interface de programmation d’application (API) sur les cartes Pi aussi proche que possible de celle d’Arduino.

Cette API doit permettre l’utilisation de GPIO, port série, bus I2C et SPI… sur Raspberry Pi, Nano Pi, Orange Pi, Banana Pi, Beagle Board… comme sur une carte Arduino.

Que propose piduino ?

  • Une interface de programmation API identique à Arduino, à l’exeception du #include <Piduino.h> est ajouté au début du programme. Cela n’interdit pas d’offrir des extensions de l’API mais à condition de rester indépendant de la plate-forme et de ne pas rendre le code incompatible avec Arduino. Il est logique de penser que les utilisateurs qui souhaitent rester dans le monde Arduino utilisent le C++, piduino est destiné à ce cas d’utilisation. Néanmoins, certaines fonctions peuvent être utilisées en langage C (pinMode(), digitalWrite(), …).
  • La description des cartes Pi basée sur un modèle “Objet” stocké dans une base de données (SQLite par défaut), permettant à un utilisateur qui n’est pas forcément un hacker d’ajouter une nouvelle variante de carte Pi SANS programmation. Une variante désigne une carte équipée du même modèle de SoC avec une partie matérielle différente (connecteurs…).
  • Une conception objet en C++ avec une séparation claire de la partie spécifique à la plate-forme. La prise en charge de nouveaux SoC se résume à ajouter une partie “HAL” dans le répertoire src/arch. Les HAL actuellement disponibles sont les Soc AllWinner de la série H (cartes Nano Pi, Banana Pi, Orange Pi …) et les Broadcom de la famille BCM2835 à 37 (cartes Raspberry Pi).
  • Un utilitaire en ligne de commande de manipulation des signaux GPIO : pido
  • Un utilitaire en ligne de commande qui récupère les informations de la carte et le la base de données : pinfo
  • Un programme de gestion de la base de données de cartes Pi: pidbm (en développement…).

Remarque

Il existe déjà quelques projets qui permettent la programmation des entrées-sorties sur cartes embarquées, mais pour un seul modèle de carte Pi.

Le plus connu est probablement wiringPi. wiringPi est une solution prévue pour Raspberry Pi et même s’il y a versions dérivées pour d’autres cartes Pi, ces versions sont des fork “boiteux” de la version originale, d’un point de vue du génie logiciel.

Les raisons qui m’ont amené à ne pas choisir wiringPi sont les suivantes :

  • Même s’il y a une similitude avec la programmation Arduino, il y a des différences qui augmentent avec le temps (et qui perturbe les débutants).
  • wiringPi a été conçu en C pur, ce qui freine l’évolutivité et n’est pas très compatible avec Arduino (le langage Arduino est du C++ !). Il est impossible par exemple de compiler un programme Arduino faisant appel à la liaison série (HardwareSerial) ou aux bus I2c (Wire) et SPI…
  • wiringPi a été conçu pour le Raspberry Pi et son adaptation à d’autres cartes Pi est de plus en plus ingérable, au fur et à mesure de l’arrivée de nouveaux modèles de cartes Pi. Il suffit d’aller sur le site de ArmBian pour voir la multitude de modèles Pi !